Genome-to-Genome Distance Calculator
  • Home
  • News
  • GGDC
    • ☛ Online Submission Form
    • Scientific Background
    • Changelog
    • FAQ
  • TYGS
  • VICTOR
    • ☛ Online Submission Form
    • Scientific Background
    • Changelog
    • FAQ
  • Single-Gene Trees
    • ☛ Online Submission Form
    • Scientific Background
    • Changelog
    • FAQ
  • FAQ
  • Contact
  • Leibniz Institute DSMZ

News and announcements

  • The GGDC has moved to a new server

    March 31st, 2022

    This is to inform you that the GGDC has moved to a new server hardware. We also switched to a https-only setting i.e. in case you use scripts that interact with the GGDC in one or the other way, make sure to change the http protocol to https. In case you experience problems of any kind, please contact us.

  • GGDC version elevated from 2.1 to 3.0

    October 19th, 2021

    To reflect the many major new features, changes and updates applied to the GGDC in the last years, the GGDC version has been elevated to 3.0. This change is accompanied by a change of the primary citation for the GGDC 3.0 which is from now on:

    TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes

    The above work describes, among other topics, the role and function of the GGDC 3.0 compared to our TYGS, LPSN and DSMZ single-gene phylogeny servers. The major changes since the release of version 2.1 and today can be found in this news section. Some more changes are listed in the GGDC changelog.

  • GGDC's upload limit increased from 50 to 75 genomes

    October 13th, 2017

    The increase of the genome cap should provide for more flexibility regarding your in silico experiments.

  • Complete redesign of the GGDC web site

    April 28th, 2017

    The GGDC web site received a complete visual overhaul and many improvements both accessibility- and usability-wise. The new web site is based on Bootstrap 3.3.7, a responsive design scheme which allows the site to be always properly viewed in response to the size of the screen or web browser one is viewing with.

    New features and changes in this release:

    • The download of accessions via GenBank master record accessions isn't possible anymore, because such records frequently link to distinct assemblies at the same time and thus yield comparisons of duplicate genomes. Instead, users can now explicitly specify ranges of accessions.
    • responsive layout
    • less text-heavy, redesigned submission forms
    • restructured FAQ section
    • submenus for the individual web services now let you find information more easily
    • each web service now has a changelog section which should contain major changes or bugfixes in the future

  • Launch of VICTOR

    February 13th, 2017

    VICTOR — the Virus Classification and Tree Building Online Resource

    Our novel web service compares bacterial and archaeal viruses ("phages") using either their genome or proteome sequences. The results include phylogenomic trees inferred using the Genome-BLAST Distance Phylogeny method (GBDP), with branch support, as well as suggestions for the classification at the species, genus and family level. The methods were validated against a comprehensive taxonomic reference dataset accepted by the ICTV with respect to phylogenetic as well as clustering algorithms. We are confident that this service will be beneficial for phage taxonomy in particular as well as for a deeper understanding of phage evolution in general. Further information on the scientific background, the underlying paper etc. are found in the VICTOR FAQ.

  • Launch of pipeline for gene phylogenies/similarities

    March 3rd, 2016

    Beside the option to reliably calculate accurate genome sequence-based DDH estimates and intergenomic distances via the GGDC 2.1, many users also asked for a complementary option to calculate gene similarities (e.g., of the 16S rRNA gene) and/or phylogenies with state-of-the-art methods. Thus, we made our DSMZ in-house phylogeny pipeline available via the GGDC website, augmenting it with a service for inferring phylogenies and/or pairwise similarities from single genes. Regarding pairwise similarities, please note that these are calculated under the recommended settings proposed in Meier-Kolthoff et al. (2013) which even allow for the application of phylum-specific 16s similarity thresholds, as introduced in the aforementioned study (also available as a free local copy). Accordingly, we have divided the FAQ into two parts, one for the GGDC as before, and a new one for the single-gene part.

  • Increased GGDC upload limit

    January 14th, 2016

    Happy New Year! We increased the FASTA file limit from 10 to 50 as well as clearly simplified file upload handling. The use of the GGDC 2.1 should now be much simpler! If you want to conduct larger analyses that do not fit into the scope of the web form, please contact us.

    Another new feature of the GGDC is the reporting of the percent G+C difference between two given genomes. Based on the results of our 2014 IJSEM publication, differences in percent genomic G+C content between distinct species can be quite close to zero. They just cannot be larger than 1 within the same species (Meier-Kolthoff et al. 2014), thus representing a valuable asset in the taxonomist's toolchain.

  • GGDC involved in discovery of new class of antibiotics

    January 10th, 2015

    A nice example for the use of the GGDC is the recent discovery of a new class of antibiotics.

  • Subspecies delineation now possible via the GGDC

    December 8th, 2014

    As of today, the GGDC 2 can also be used to delineate microbial subspecies. The rationale behind this is explained in our recent study.

  • The GGDC 2 has been released!

    February 21st, 2013

    GGDC 2 is an updated and enhanced version with improved DDH-prediction models and additional features such as confidence-interval estimation. To the best of our knowledge, it is the only digital DDH method that provides this feature. Of all genome-based methods we are aware of, GGDC 2 yields the highest correspondence to traditional DDH (without sharing its drawbacks). Details are described in our BMC Bioinformatics study.

  • The Genome-to-Genome Distance Calculator version 1 (GGDC 1.0) has been released!

    March, 18th 2010

    Even though, the pragmatic species concept for Bacteria and Archaea is ultimately based on DNA-DNA hybridization (DDH), the conventional ("wet-lab") approach is quite tedious, error-prone and can only be conducted in a few specialized labs. Here, as a solution, the GGDC reliably calculates accurate digital DNA:DNA hybridization estimates (dDDH values) between pairs of genome sequences, without mimicking the pitfalls of conventional DDH. The GGDC tool, based on the approach of Henz et al. (2005), yielded slightly to significantly higher correlations with conventionally determined DDH than the average nucleotide identity implementation (Konstantinidis & Tiedje, 2005). This is crucial, as agreement with the conventional DDH standard, on average, is the main criterion for the success of genome sequence-based methods (Stackebrandt et al., 2002); otherwise species boundaries estimated with sequence-based methods were not consistent with earlier ones estimated conventionally. More information is found in the Background section and in our accompanying publications (Auch et al. 2010a, Auch et al. 2010b).

  © 2012-2023 Leibniz Institute DSMZ · Privacy · Terms

Back to top